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Abstract

In this survey, we state the Lindström-Gessel-Viennot theorem similar to its statement
in Combinatorial Mathematics by Douglas B. West with some adjustment [Wes20].
The theorem connects the number of disjoint paths between the sets of vertices in a
digraph, along with permutations on the pairing of vertices, with the determinant of
a special matrix associated with the set of vertices. We prove the statement using the
concepts introduced. Lastly, we explore consequences of this theorem.

1 Introduction

In 1973, Lindström published a paper giving a generalization of a previous result about
digraphs and the induced matroids in these graphs [Lin73]. In doing so, Lindström set the
ground for the main theorem of this survey when he built a special matrix with entries
corresponding to a ‘weight’ of a collection of disjoint paths in a digraph [Lin73]. However,
it was Gessel and Viennot who built on this ground work to obtain the identity in the main
theorem [GV85]. Note that Lindström used lattice paths in his discussion, however we will
show the result for finite acyclic digraphs.

We will begin by introducing background concepts necessary to understand the statement
of the theorem as well as the proof.

2 Background

Definition 2.1 Given a finite set of numbers [n] = {1, ..., n}, a permutation on [n] is a
bijective function σ : [n]→ [n].

Example 2.2 An example of a permutation σ on [6] has the mappings: 1 7→ 3 7→ 5 7→ 1,
2 7→ 4 7→ 2, and 6.

Definition 2.3 An involution φ is a permutation such φ2 is the identity mapping on [n].

The special properties of permutations that are at the crux of this theorem are inversions
and the sign of a permutation.
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Definition 2.4 An inversion of a permutation σ on [n] is a pair (i, j) in [n]× [n] where i < j
and σ(i) > σ(j).

Definition 2.5 The sign of a permutation is (sign σ) = (−1)N(σ) where N(σ) is the number
of inversions in σ.

Lemma 2.6 Let σ be a permutation of [n]. If σ′ is constructed by swapping the mappings
of i and j, denoted as σ′ = (i j)σ, then (sign σ′) = −1 · (sign σ).

Proof. Let σ be a permutation of [n] and i < j be elements of [n]. Suppose the elements σ(i)
and σ(j) are adjacent, meaning there does not exist σ(k) such that σ(k) is in between σ(i)
and σ(j). If σ(i) < σ(j), then swapping them would add one inversion. If σ(i) > σ(j), then
swapping them would remove an inversion. In either case, we have changed the number of
inversions by 1. Thus, (sign σ′) = −1 · (sign σ).

Suppose σ(i) and σ(j) are not adjacent. Therefore, there exists S ⊆ [n] with |S| = m ≥ 1
such that σ(s) lies in between σ(i) and σ(j) for all s ∈ S. If σ(i) < σ(j), we can perform m
adjacent swaps to have σ(i) be adjacent to σ(j). We do so by swapping σ(i) with the σ(s)
it is adjacent to that it has not already swapped with. After m swaps, we have σ(i) < σ(j)
are adjacent, so by performing one more swap, we reach σ(i) > σ(j). Afterwards, we will
perform m adjacent swaps with σ(j) to the σ(s) that it has not already swapped with. The
end result is that σ(j) is now in the original position of σ(i) before the adjacent swappings.
Further, the other positions σ(s) are in their original positions before any swappings. The
total number of adjacent swaps we performed is 2m + 1, which is an odd number for any
integer m ≥ 1. By the previous case, this results in (sign σ) changing an odd number of
times. Thus, (sign σ′) = −1 · (sign σ).

Definition 2.7 A graph G is a pair (V,E) where V is a set of elements called vertices and
E is a set of pairs of vertices called edges. More precisely, E ⊆ V × V = {(u, v) : u, v ∈ V }.
If an edge exists and connects a pair of vertices, we call these vertices adjacent. We only
consider graphs with finite number of vertices and edges connect two distinct vertices.

Definition 2.8 A walk in G = (V,E) is a list of elements of V , v0v1 . . . vk, such that vi−1vi
is an edge in E for all i = 1, 2, . . . , k. A walk is said to be closed if the starting vertex v0 is
equal to the ending vertex vk. A path in G is walk such that no vertex is repeated. If we
allow for only the starting vertex and ending vertex of a path to be the same, we call that a
cycle. A graph with no cycles is called acyclic. We say two paths are distinct if they do not
share any internal vertices, but we allow for their starting vertex or ending vertex to be the
same.

We can extrapolate that for any two vertices u, v in a cycle, there are two paths that can
come about from the cycle. We do so by partitioning the cycle into two paths one that starts
at u and ends with v and the other starting at v and going to u using the other part of the
cycle. Further, the converse is true. For vertices u, v, if there are two distinct paths that
starts at u and ends at v, we say that u and v are in a cycle. This idea is further explored
and generalized in Menger’s Theorem [Die17].
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Therefore, in this discussion, we will define more structure to graphs that allow for paths
to intersect but cycles do not form.

Definition 2.9 A directed graph ‘digraph’ imposes an order on the pair of vertices for each
edge, denoted as G = (V, ~E). More precisely, if the edge uv = (u, v) and vu = (v, u) are in
~E, then they must be distinct elements of ~E.

The definitions of paths and acyclic are the same for digraphs as is in the general graph.
However with the imposition of order on the edges, if there are two paths that start at u
and end at v, we do not necessarily have a cycle. A cycle can only arise if in addition to a
path from u to v, there is a path v to u.

Definition 2.10 Given two subsets of a vertex setX = {x(1), ..., x(n)}, Y = {y(1), ..., y(n)} ⊆
V (G), an X, Y -path system P consists of a permutation σP of [n] and paths P1, ..., Pn such
that Pi is a path from x(i) to y(σP(i)). An X, Y -path system is called disjoint if the paths
P1, ..., Pn are pairwise non-intersecting.

Definition 2.11 The weight of an edge e, denoted by w(e), is a non-negative real number.
The weight of a path Q, denoted by w(Q), is the product of the weights of the edges in the
path.

The weight of a path system P , denoted as W (P), is the product over all paths in the
path system:

W (P) =
∏
Q∈P

w(Q) =
∏
Q∈P

∏
e∈Q

w(e).

Definition 2.12 Given two subsets of a vertex setX = {x(1), ..., x(n)}, Y = {y(1), ..., y(n)} ⊆
V (G), let P (x(i), y(j)) be the set of all paths that start at x(i) and end at y(j). An X, Y -path
matrix has the sum of the weights of all paths from x(i) to y(j) for its (i, j)-th entry

aij =
∑

Q∈P (x(i),y(j))

w(Q).

Definition 2.13 Given a n× n path matrix A = [aij], the determinant of A is given by the
sum over all permutations σ of [n],

det(A) =
∑
σ

(sign σ)
n∏
i=1

ai,σ(i).

3 Lindström-Gessel-Viennot Theorem

Theorem 1 (Lindström-Gessel-Viennot Theorem) [Wes20] Let X and Y be sets of n
vertices in a finite acyclic digraph G with edges weighted by w. If A is the X, Y -path matrix,
and P is the set of disjoint X, Y -path systems weighted by W as above, then∑

P∈P

(sign σP)W (P) = det(A).
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Proof. We will first consider the set T of all X, Y -path systems, partitioning T into the
set of disjoint X, Y -path systems P and the set of intersecting X, Y -path systems Q. By
defining a special signed involution ϕ : Q → Q, we can establish that the net contribution
over Q is zero. Thus, ∑

P∈T

(sign σP)W (P) =
∑
P∈P

(sign σP)W (P).

Lastly, we will interpret the determinant of A combinatorially and relate it to the signed
sum over T to conclude the theorem.

Let X = {x(1), . . . , x(n)} and Y = {y(1), . . . , y(n)} be n-sets of vertices in a finite acyclic
digraph. Keep in mind that for every element T of T, there are n paths in T that start from
a unique x(i) and end at a unique y(σP(i)).

Let P be the set of disjoint X, Y -path systems and Q be the set of intersecting X, Y -
path systems. For each element Q = {P1, . . . , Pn} of Q where Pi is a path from x(i) to
y(σ(i)), there are at least two paths that intersect. Let k be the smallest integer such that
Pk intersects another path in Q. Then, let l be the minimum index distinct from k such
that Pk intersects Pl. Note that k < l. We impose the minimality in order to obtain a
well-defined involution.

Let Pk := x(k)u2 · · ·ui−1y(σP(k)) and Pl := x(l)v2 · · · vj−1y(σP(l)). Our goal is to swap
the endings of Pk and Pl after their final intersection. Since Q is a path-system, the final
intersection of Pk and Pl cannot be at their end point in Y . Although it should be noted
that, it is possible for at most one of them to end at the intersection, therefore swapping the
endings of Pk and Pl would result in swapping which path ends at the intersection.

Figure 1: (left) The original configuration of Q.
(right) The configuration of Q′ after swapping the endings of Pk and Pl

Suppose the final intersection of Pk and Pl is the vertex p, then define P ′k and P ′l as
P ′k = x(k)u2 · · · p · · · vj−1y(σP(l)) and P ′l = x(l)v2 · · · p · · ·ui−1y(σP(k)). We can visualize
the change in Figure 1.
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Note, the collection of paths Q′ = {P1, . . . , P
′
k, Pk+1, . . . , Pl−1, P

′
l , . . . , Pn} is still a path

system, and since the swapping did not eliminate the intersection, Q′ ∈ Q.
Define the function ϕ : Q→ Q to do this ending swapping process given a path system

Q. Roughly summarizing above, ϕ will find the smallest index k such that Pk ∈ Q ∈ Q
intersects another path, then find the smallest index l such that Pk intersects Pl. Then, if p
is the final intersection of Pk and Pl, ϕ will swap the part of Pk and Pl after p.

If we apply ϕ to Q′, the smallest index it finds will be k for path P ′k. Otherwise, there
exists an index m < k such that Pm intersects another path. Since Pm was not chosen and
altered by ϕ on Q, Pm is the same path in both Q and Q′. This contradicts the minimality
of k since we specifically chose it to be the smallest index of an intersecting path in Q. Then,
ϕ will find that the smallest index that intersects P ′k is l. Otherwise, there exists an index
k < µ < l such that P ′k intersects with Pµ in Q′. This contradicts the minimality of l for Q,
since it would imply that Pk intersects Pµ in Q.

Since the interesting pair of paths that ϕ chooses in Q′ is P ′k and P ′l , we know they
intersect at p. If m 6= p is the final intersection of P ′k and P ′l in Q′, then this implies that
Pk and Pl had another intersection at m in Q, which contradicts the final property of p.
So, applying ϕ to Q′ will swap the parts of P ′k and P ′l after the intersection p. However,
swapping these endings will return us to Pk and Pl. Thus, ϕ(Q′) = Q and so ϕ2(Q) = Q. We
can extend ϕ to all the elements of T by defining ϕ(P ) = P if P ∈ P. Therefore, ϕ2(T ) = T
for any T in T and so ϕ is an involution.

We investigate the contribution of P ′k and P ′l of Q′ to the weight of the path system.
Since the associated permutation σQ′ of Q′ only differs from σQ of Q at two places σQ(k)
and σQ(l) by a swap, by Lemma 2.6, we have that

(sign σQ′) = −1 · (sign σQ).

For a path Pi = v1 . . . vk and a vertex v in Pi, let pre(Pi, v) be the path within Pi that starts
at v1 and ends at v, and let post(Pi, v) be the path within Pi that starts at v and ends at
vk. Further, by the swapping process,

pre(P ′k, p) = pre(Pk, p) , pre(P ′l , p) = pre(Pl, p) ,

post(P ′k, p) = post(Pl, p) , post(P ′l , p) = post(Pk, p).

With this notation, we can use the commutativity of the definition of weights to obtain the
following identity

w(P ′k)w(P ′l ) =
∏
e∈P ′k

w(e)
∏
e∈P ′l

w(e) =
∏

e∈pre(P ′k,p)

w(e)
∏

e∈post(P ′k,p)

w(e)
∏

e∈pre(P ′l ,p)

w(e)
∏

e∈post(P ′l ,p)

w(e)

=
∏

e∈pre(Pk,p)

w(e)
∏

e∈post(Pk,p)

w(e)
∏

e∈pre(Pl,p)

w(e)
∏

e∈post(Pl,p)

w(e)

=
∏
e∈Pk

w(e)
∏
e∈Pl

w(e) = w(Pk)w(Pl).
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Note that Q′ \ {P ′k, P ′l } = Q \ {Pk, Pl}. Therefore, we have

W (Q′) =
∏
Pi∈Q′

w(Pi) =

 ∏
Pi∈Q′\{P ′k,P

′
l }

w(Pi)

w(P ′k)w(P ′l )

=

 ∏
Pi∈Q\{Pk,Pl}

w(Pi)

w(Pk)w(Pl) =
∏
Pi∈Q

w(Pi) = W (Q).

We can separate Q into two disjoint sets A and B using the involution ϕ. For element
Q of Q, put Q in A (if it is not already in B), and put Q′ = ϕ(Q) in B. Then, with
(sign σQ′) = −(sign σQ) and W (Q′) = W (Q), we have that the net contribution of the
elements of Q is zero.∑

Q∈Q

(sign σQ)W (Q) =
∑
Q∈A

(sign σQ)W (Q) +
∑
Q′∈B

(sign σQ′)W (Q′)

=
∑
Q∈A

(sign σQ)W (Q)−
∑
Q∈A

(sign σQ)W (Q) = 0.

Therefore, ∑
P∈T

(sign σP)W (P) =
∑
P∈P

(sign σP)W (P).

For each permutation σ, there are path systems P in T such that σP = σ. Recall that
for each i = 1, . . . , n, ai,σ(i) =

∑
Q∈P (x(i),y(σ(i)))w(Q), the sum over P (x(i), y(σ(i))), the set

of paths Q that start at x(i) and ends at y(σ(i)). The total weight of such path system P is
n∏
i=1

ai,σ(i) =
n∏
i=1

∑
Q∈P (x(i),y(σ(i)))

w(Q) =
∑
P∈T
assoc.
to σ

W (P).

The final equality arises since the product of the sums of weights of path systems Q over
P (x(i), y(σ(i))) can be grouped up into path systems P in T such that every P is associated
with σ.

Lastly, we can partition T into its association to each permutation σ. Thus, by Definition
2.13 and the net zero contribution over Q, we have that the determinant of A is

detA =
∑
σ

(sign σ)
n∏
i=1

ai,σ(i) =
∑
σ

(sign σ)
∑
P∈T
assoc.
to σ

W (P)

=
∑
P∈T

(sign σP)W (P)

=
∑
P∈P

(sign σP)W (P).

Thus, we have shown the theorem.
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4 Applications

Nice consequences of the Lindström-Gessel-Viennot theorem gives classical determinant
properties their own combinatorial interpretation [SAL03]. In this section, we will show
how Lindström-Gessel-Viennot is used to show that the determinant of a transpose is equal
to the determinant of the original matrix and we also prove the Cauchy-Binet formula.

4.1 Determinant of Transpose Matrix

Definition 4.1 Given n,m positive integers, let A be an n ×m matrix given by [aij] with
1 ≤ i ≤ n and 1 ≤ j ≤ m. The transpose AT is the m × n matrix obtained by taking the
rows of A and making them columns of AT . Thus, AT is given by [aji].

Definition 4.2 For a permutation π of [n], a cycle of π is a subset S of [n] such that for
any integer k ≥ 1 and for all s ∈ S, we have πk(s) ∈ S. A transposition is a cycle of size 2.

Lemma 4.3 The sign of the composition of permutations is the product of the signs of
permutation, in other words, for any permutations π1 and π2 of [n], (sign (π1 ◦ π2)) =
(sign π1)(sign π2).

Proof. Every permutation π of [n] has a unique decomposition and factorization into trans-
positions [Cla71]. In [Jac09], there is an equivalent definition of the sign of a permutation
in terms of the number of transpositions in the decomposition and factorization. We have

(sign π) = (−1)m

where m is the number of transpositions in the decomposition and factorization of π.
Let π1 and π2 be permutations of [n]. Suppose π1 and π2 has m1 and m2 number

of transpositions in their decomposition and factorization, respectively. From [Cla71], we
know that the decomposition and factorization of their composition π1 ◦ π2 has m1 + m2

transpositions.
Therefore, we have

(sign (π1 ◦ π2)) = (−1)m1+m2 = (−1)m1(−1)m2 = (sign π1)(sign π2).

Thus, proving the theorem.

Lemma 4.4 Given any permutation σ, we have (sign σ) = (sign σ−1).

Proof. We have σ ◦ σ−1 is the identity permutation. The identity permutation has zero
inversions, thus (sign (σ ◦ σ−1)) = (sign 1) = (−1)0 = 1.

By Lemma 4.3, (sign σ)(sign σ−1) = 1. Therefore, for the product of two terms to be
positive, they must be the same sign.
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Proposition 4.5 Let A be a n× n matrix. det(AT ) = detA.

Proof. We view A to be a X, Y -path matrix of a finite acyclic digraph G, with |X| = |Y | = n.
The interpretation of the transpose becomes viewing the direction of all the edges of G in
reverse. Therefore, AT could be seen as a Y,X-path matrix.

By Lindström-Gessel-Viennot theorem, for any given permutation σ of [n], we have a
collection of disjoint X, Y -path systems Pσ associated to σ in the calculation of detA.
Therefore, for each P in Pσ ‘reverse’ the directions of each edge to obtain a Y,X-path
system R.

Note that the permutation associated with R is σ−1. By reversing the direction of edges,
we obtain a permutation σ−1 of [n] and a collection of disjoint Y,X-path systems Rσ−1

associated to σ−1.
Since we obtain R from P , there is a one-to-one correspondence between Pσ and Rσ−1 .

Suppose P = {P1, . . . , Pn}, then R = {P̃1, . . . , P̃n} where, for each i = 1, . . . , n, P̃i is the
path Pi with all directions reversed and the weights are preserved. Therefore,

W (P) =
n∏
i=1

w(Pi) =
n∏
i=1

w(P̃i) = W (R)

and so, this correspondence preserves the path system weights.
Further the summation over all permutations σ of [n] will coincide with the summa-

tion over all permutations σ−1 of [n]. Thus, by Lemma 4.4 and Lindström-Gessel-Viennot
theorem,

det(AT ) =
∑
σ−1

(sign σ−1)
∑

R∈Rσ−1

W (R) =
∑
σ

(sign σ)
∑
P∈Pσ

W (P) = detA

proving the proposition.

4.2 Cauchy-Binet Formula

Typical linear algebra text usually contains the following fact: Let A and B be n×n matrices.
Then, det(AB) = det(A) det(B) [SAL03]. The restriction of A and B being the same size
n× n can be alleviated using the Lindström-Gessel-Viennot theorem.

The following proposition gives an identity for the determinant of a product of two
matrices that are not the same size (given that the product is well-defined and the product
matrix is a square matrix).

Proposition 4.6 (Cauchy-Binet Formula) [Wes20] Let n, p be positive integers with
n ≤ p. If A = [ai,j] is a n× p matrix and B = [bj,k] is a p× n matrix, then

det(AB) =
∑
S⊆S

(det(AS))(det(BS))

where S is the family of all n-subsets of [p], AS consists of the columns of A indexed by S,
and BS consists of the rows of B indexed by S.
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Proof. Let X = {x(1), . . . , x(n)}, Y = {y(1), . . . , y(n)}, and Z = {z(1), . . . , z(p)}. Form a
digraph on the vertex set X ∪ Y ∪ Z. Let with edge sets be

A = {x(i)z(j) : i = 1, . . . , n , j = 1, . . . , p} and

B = {z(j)y(k) : j = 1, . . . , p , k = 1, . . . , n}.

We assign edge weights: w(x(i)z(j)) = ai,j and w(z(j)y(k)) = bj,k.
Thus, the (i, k)-th entry of C = AB is the dot product of the i-th row of A and the k-th

column of B, which gives ci,k =
∑n

j=1w(x(i)z(j))w(z(j)y(k)). Therefore, C is an X, Y -path
matrix since w(x(i)z(j))w(z(j)y(k)) is the weight of the paths connecting x(i) to y(k). Let
P be the set of all disjoint X, Y -path systems, and by Lindström-Gessel-Viennot theorem,

det(AB) =
∑
P∈P

(sign σP)W (P).

Let P = {P1, . . . , Pn} in P. For each i, Pi chooses one element of Z for its path from x(i) to
y(σ(i)). It has to pass exactly one element of Z by design of the digraph, since all edges from
X connects to an element of Z and does not return. Similarly, all edges from Z connects to
an element of Y and does not return. Let S be the indices of elements of Z that was used
by the paths in P . Define σ′ as the permutation on [n] such that for each i in [n], z(σ(i)) is
in the path Pi.

We can deconstruct every path system P in P as two disjoint path systems AS (going
from X to Z ′) and BS (going from Z ′ to Y ), where Z ′ are the elements of Z indexed by S.

More precisely, we can split Pi in P to be a path Ai connecting x(i) to z(σ′(i)) and a
path Bi connecting z(σ′(i)) to y(σ(i)). Thus,

w(Pi) =
∏
e∈Pi

w(e) =
∏
e∈Pi

ending at
z(σ′(i))

w(e)
∏
e∈Pi

starting at
z(σ′(i))

w(e)

=
∏
e∈Ai

w(e)
∏
e∈Bi

w(e) = w(Ai)w(Bi).

For each S, define the sets

MS = {AS | AS disjoint X,S-path system} and

NS = {BS | BS disjoint S, Y -path system}.

For path systems P in P, we have disjoint path systems AS in MS and BS in NS such that

W (P) =
∏
Pi∈P

w(Pi) =
n∏
i=1

w(Ai)w(Bi) =
∏

Ai∈AS

w(Ai)
∏
Bi∈BS

w(Bi) = W (AS)W (BS).
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Consider the matrices AS consisting of the columns of A indexed by S and BS consisting
of the rows of B indexed by S. Since AS and BS are square matrices, by Lindström-Gessel-
Viennot theorem,

det(AS) =
∑
AS∈MS

(sign σAS)W (AS) det(BS) =
∑
BS∈NS

(sign σBS)W (BS)

where σAS is a bijective map [n]→ S and σBS is a bijective map S → [n].
For any pair AS in MS and BS in NS, we can concatenate every path in AS with exactly

one path in BS, since for every i = 1, . . . , n, we have a path from x(i) to z(σAS(i)) in AS
and a path from z(σAS(i)) to y(σBS(i)) in BS.

We know these paths are disjoint since AS and BS are each made up of n disjoint paths,
so their concatenation only overlaps at the elements of Z. Further, we know two paths in AS
do not end at the same element of Z and two paths in BS do not start at the same element
of Z. Therefore, the concatenation of AS and BS is a disjoint X, Y -path system, and thus,
there is a P∗ in P such that AS ∪ BS = P∗.

Then, by construction, σAS ◦ σBS = σP∗ is a permutation of [n] to [n] for any AS in MS

and any BS in NS. By Lemma 4.3, (sign σP∗) = (sign (σAS ◦ σBS)) = (sign σAS)(sign σBS).
Therefore, by summing S over all n-subsets of [p], we have∑

S⊆S

det(AS) det(BS) =
∑
S⊆S

∑
AS∈MS

(sign σAS)W (AS)
∑
BS∈NS

(sign σBS)W (BS)

=
∑
S⊆S

∑
AS∈MS

∑
BS∈NS

(sign σAS)(sign σBS)W (AS)W (BS).

By the above, if we fix AS in MS and sum over BS in NS, then we will obtain a collection of
X, Y -path systems {P∗(AS)} associated with the collection of compositions of permutations
σAS ◦ σBS = σP∗(AS) where σAS is fixed and σBS varies over NS.

Then, collecting these X, Y -path systems over AS in MS will yield every possible disjoint
X, Y -path system that uses the elements of Z indexed by S. Lastly, summing over all possible
n-sets of [p] will yield every disjoint X, Y -path system. Therefore, by Lemma 4.3 and the
above, we have ∑

S⊆S

det(AS) det(BS) =
∑
S⊆S

∑
AS∈MS

(sign σP∗(AS))W (P∗(AS))

=
∑
P∈P

(sign σP)W (P)

= det(AB).

Thus, we have the Cauchy-Binet formula.
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